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“One day I’m going to get help
for my procrastination problem
and research articles ...”

Message from the Chair
Willliam Cook
Industrial and Systems Engineering
Georgia Institute of Technology
bico@isye.gatech.edu

As they say, time flies.
I took over as the chair of the society in January 2012, following the great path

set by Bob Vanderbei (2010/11), Robin Lougee-Heimer (2008/09), John Chinneck
(2006/07), Ariela Sofer (2004/05), David Woodruff (2002/03), Irv Lustig (2000/01),
Ramayya Krishnan (1998/99), Richard Barr (1996/97), and on back to our roots. My
knowledge of ICS history goes back only as far as our online collection of newslet-
ters: Volume 18, Number 2, 1997. It would be very nice to fill out the archive with
the first 17 volumes, so if anyone has a collection they might be willing to scan in
please let me know.

Many thanks to Ojas Parekh (Sandia Labs) for taking over as the ICS Webmas-
ter. It is a tough job to learn the ins and outs of the EZ Publish system adopted
by INFORMS, but, thanks to many tips from our old Webmaster Bill Hart, Ojas is
now busy updating the many ICS Web pages. If you spot a dead link or incorrect
information on our pages, please let Ojas know at odparek@sandia.gov.

I hope to see everyone at INFORMS Phoenix in October and at the ICS Con-
ference in Santa Fe, January 2013!

Message from the Editor
Yongpei Guan

Industrial and Systems Engineering
University of Florida

guan@ise.ufl.edu

I would like to first bring your attention that there are lots of changes this
year for the society. Officers, board of directors, and editorial board for the jour-
nal have been updated. Besides these, in this letter, we have our regular collection of
updates— a Mathematical Programming Glossary update from Allen Holder and an
IJOC update from John Chinneck. We also add a new project update for SCIP 3.0
provided by Timo Berthold. Please take a while reading the extended abstracts for
the 2011 ICS prize and 2011 ICS best student papers. The 2012 ICS awardees will
be announced at INFORMS Phoenix. In addition, please do not forget to learn the
updates of your colleagues by reading the members in the news and consider attend-
ing ICS-2013. Finally, special thanks to Warren Powell for contributing an awesome
article entitled A Unified Framework for Stochastic and Dynamic Programming for
this newsletter.
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ICS-2013
William E. Hart and Jean-Paul Watson

Sandia National Laboratories
{wehart,jwatson}@sandia.gov

The 13th INFORMS Computing Society Conference will take place January 5 -
8, 2013, in Santa Fe, New Mexico, at the Eldorado Hotel - just footsteps from the
legendary, historic Santa Fe Plaza. ICS is focused on contributions at the interface
of computer science, artificial intelligence, operations research, and management
science. The conference organizers invite submissions discussing novel theoretical
and applied research consistent with the ICS focus.

We especially encourage submissions targeting this year’s conference theme:
Modeling and Analytics for the Real World. Areas of special interest include:
- Modeling Languages and Systems - Uncertainty Analysis - Resiliency and
Robustness - Multi-Objective and Multi-Criteria Analysis - Decision-Support -
Large-Scale Systems Analysis

Other interest areas relating to the ICS focus areas include: - Design and
Analysis of Algorithms - Heuristic Search and Learning - Computational Probabil-
ity and Analysis - Constraint Programming and Hybrid Optimization - Knowledge
and Data Management - Simulation - Solvers - Telecommunications and Electronic
Commerce - Applications in Biology, Medicine, and Health Care

The main conference will begin on Sunday, January 6. On January 5, the or-
ganizers will host the CooprFest 2013 workshop - details to follow!

Presentation-Only Submissions

An abstract of no more than 200 words should be submitted through the sub-
mission page at http://www.easychair.org/conferences/?conf=ics2013. Names and
affiliations of all authors should be provided, with the presenting author listed first.
All accepted presentation-only abstracts will be printed in the conference program.
Important dates are shown as follows:

Submission deadline: October 1, 2012
Notification of acceptance: November 1, 2012
Author/presenter registration: November 1, 2012
Early registration: November 1, 2012
Hotel registration: December 1, 2012

If you have any questions at all, please do not hesitate to contact one of the
co-chairs of ICS 2013:

William E. Hart, Sandia National Laboratories - wehart@sandia.gov
Jean-Paul Watson, Sandia National Laboratories - jwatson@sandia.gov

Up-to-date information concerning ICS can be found at:
http://www.informs.org/Community/Conferences/ICS2013
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Report on the INFORMS
Journal on Computing
John Chinneck
Carleton University
joc@mail.informs.org

It’s been a busy year for the INFORMS Journal on Com-
puting! In the last year we’ve received 178 new paper sub-
missions and 105 revised submissions for a total of 283 items
for review. Thank goodness for our excellent editors who not
only manage to keep on top of this flow, but are also able to
recruit high-quality reviewers. We published 45 research arti-
cles and featured 11 online book reviews in the last four issues
(we publish four times per year). And the print queue is still
quite lengthy, though articles appear online quite quickly after
acceptance. All of these are indicators of the popularity of the
JOC among authors.

The JOC scores very well on the “Article Influence” score,
which measures its impact on a field based on 5-year citations
per article. On this measure eigenfactor.org ranks the JOC 14th
out of 86 journals in its “Operations Research” category. Us-
ing a similar measure, ISI places us at 16th of 72 journals in
their “Operations Research and Management Science" cate-
gory. Statistics on our review times and citations are available
via links on the page at http://www.informs.org/Pubs/IJOC/
Stats-History.

We have two Level 1 sponsors this year (IBM T.J. Watson
Research Center and the INFORMS Computing Society), and
two Level 2 sponsors (GAMS Development Corporation and
LINDO Systems Inc.). We greatly appreciate their assistance
in helping fund the high quality work of the Journal.

We have added some new Associate Editors over the past
year: Alfa Attahiru of the University of Manitoba is now as-
sisting Winfried Grassmann in the “Computational Probability
and Analysis” Area. Panagiotis Ipeirotis of the Stern School
of Business at New York University is not assisting Alexan-
der Tuzhilin in the “Knowledge and Data Management” Area.
Sadly we lost a valued Associate Editor in Alberto Caprara
who died in a mountaineering accident in April.

Of course the biggest news is that there will be a new
Editor-in-Chief of the INFORMS Journal on Computing start-
ing on January 1, 2013: David Woodruff of the University of
California at Davis. David will already be familiar to you as
the current Area Editor for “Heuristic Search and Learning”
(since 1998). He also served as an Associate Editor from 1998
to 2002. So he has a long relationship with the Journal and
a good understanding of our traditions and motivations. The
JOC will be in good hands for years to come.

I will have served as the Editor-in-Chief for five and a half
years when my second term comes to an end on December
31, 2012. It’s certainly been interesting to watch develop-
ments at that fascinating interface of OR and CS! In those

years we’ve revised the descriptions of several of the jour-
nal Areas, and added a new one (Applications in Biology,
Medicine, and Health Care). Plus we added the Book Reviews.
We also made the transition to online manuscript handling, de-
veloped a new web site, and then redesigned it as we move
to a new content management system. But the best part has
been working with the very fine and dedicated folks who are
the heart and soul of journal publishing: the JOC editors, the
referees, Managing Editor Kelly Kophazi and the INFORMS
Publications staff. And of course the authors, without whom
the Journal could not exist. Thanks to you all!

As always, we are looking for excellent research at that
interesting intersection between operations research and com-
puter science. Send us your best work: maybe you’ll join
that elite group of highly cited papers that influences the re-
search community. You can find the JOC web site at http:
//www.informs.org/Pubs/IJOC.

INFORMS Journal on
Computing – New
Editor-in-Chief

Longtime ICS (and CSTS) member David Woodruff was
recently named Editor-in-Chief of the INFORMS Journal on
Computing. He chaired the ICS meeting in Monterey and has
served as Chair of the ICS. Woodruff, who is a Professor in the
Graduate School of Management at UC Davis, will take the
reigns of the IJOC from John Chinneck in January 2013. This
is his first term for the period of January 1, 2013 – December
31, 2015.

EIC Search Committee: W. David Kelton(Chair), Cheryl
Gaimon, Ramesh Sharda, and Bob Vanderbei.

ICS Member
Shoemaker Elected to
National Academy of
Engineering

Christine Shoemaker, Cornell’s Joseph P. Ripley Professor of
Engineering, has been elected to the National Academy of En-
gineering, among the highest professional distinctions for an
engineer.

Shoemaker, a Professor in the Cornell School of Civil and
Environmental Engineering (CEE) and School of Operations
Research and Information Engineering, was cited “for devel-
opment of decision-making optimization algorithms for envi-
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ronmental and water resources problems.”
Her research focuses on cost-effective, robust solutions for

environmental problems by using optimization, modeling and
statistical analyses. This includes development of general pur-
pose, numerically efficient nonlinear and global optimization
algorithms utilizing high performance computing and applica-
tions to data from complex, nonlinear environmental systems.
Shoemaker received her Ph.D. in mathematics under the super-
vision of Richard Bellman in optimal control, and she chose to
focus on environmental applications.

Shoemaker’s research is interdisciplinary; she has super-
vised PhD students from a number of fields including Op-
erations Research and Information Engineering and Applied
Mathematics, in addition to students from her home field CEE.
She has had NSF funding from four different Directorates. Her
projects are often in collaboration with other faculty and in-
clude physical and biological groundwater remediation, pesti-
cide management, ecology, climate modeling, carbon seques-
tration, and surface water pollutant transport in large water-
sheds.

Professor Shoemaker is a Distinguished Member of the
American Society of Civil Engineering (ASCE). She has been
elected a Fellow in the following professional societies: Amer-
ican Geophysical Union (Hydrology section), ASCE, and IN-
FORMS (Institute for Operations Research and Management
Science). She also won a Humboldt Research Prize from Ger-
many. She initiated and led a 9-year multidisciplinary interna-
tional project (sponsored by SCOPE and United Nations En-
vironment Program) that brought information and workshops
about groundwater contamination to developing countries at a
time (1987-1996) when those regions were doing little to pre-
vent contamination from industrial chemicals. Such contami-
nation is often irreversible or extremely expensive to remove
because it is in groundwater, so prevention is the best strategy.

Prof. Shoemaker was the first woman faculty member in
the Cornell College of Engineering to be promoted to tenure.
In 1985 she was the first woman to be a Cornell Engineering
Department Chairperson. She received a national award from
the Society of Women Engineers in 1991 for her scholarship
and efforts to encourage women engineers during years when
there were very few woman students or faculty in engineering.

Membership in the National Academy of Engineering hon-
ors those who have made outstanding contributions to “engi-
neering research, practice or education, including, where ap-
propriate, significant contributions to the engineering litera-
ture,” and to the “pioneering of new and developing fields of
technology, making major advancements in traditional fields
of engineering, or developing/implementing innovative approa-
ches to engineering education.”

2011 ICS Prize
Goes to
Hochbaum at
Berkeley

The winner of the 2011 ICS Prize for the best English lan-
guage paper dealing with the Operations Research/Computer
Science interface is Dr. Dorit Hochbaum for her paper “Poly-
nomial Time Algorithms for Ratio Regions and a Variant of
Normalized Cut,” which has been published in IEEE Transac-
tions on Pattern Analysis and Machine Intelligence in 2010.

This paper presents an efficient, highly novel ap-
proach for solving a group of well-known com-
binatorial optimization problems arising in com-
puter vision and image analysis, including the ratio-
regions problem and a variant of the normalized-
cut problem. Each problem expresses two con-
flicting objectives by a single nonlinear, ratio ob-
jective. Such conflicting objectives could be, for
example, the desire to cluster similar pixels to-
gether while limiting the total number of clusters.
Although studied for over a decade, researchers
have suspected these problems to be NP-hard and
hence have proposed approximate, continuous-based
algorithms for their solution. The author recast
each problem as a single-parameter parametric in-
teger program with monotone inequality constraints.
For a fixed parameter, this integer problem can in
turn be solved as a minimum-cut problem. Fortu-
nately there are just a linear number of parameter
break points to evaluate, and so the overall algo-
rithm is fast in theory and effective in practice.
In addition, the parametric approach provides in-
formation on the trade-off between the two con-
flicting objectives. Besides solving these specific
problems, this paper also sheds light on the diffi-
culty of other related NP-hard problems.

In short, this paper provides a beautiful contri-
bution to computer vision by taking a very inno-
vative angle and demonstrating how to derive al-
gorithms with strong performance guarantees and
excellent experimental behavior.

Extended Abstract (contributed by Dorit Hochbaum):
The normalized cut is a well known optimization criterion in
image segmentation, named so by Shi and Malik [SM00]. It
is defined on a graph where each object (pixel) is represented
by a node, and there is a similarity weight between each pair
of neighboring objects. The problem is a close relative of the
Cheeger constant problem, [Chee70]. Both problems are NP-
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hard and within a factor of two of each other. Both problems
have been addressed with the “spectral method" that involves
finding the Fiedler eigenvalue. Much work in the literature is
devoted to approximations and speedups of methods to find
the eigenvector. I was presenting to my seminar class a 2006
Nature paper by Sharon et al. [SGS06] that gave a new aggre-
gation method for solving approximately the eigenvector prob-
lem for the normalized cut problem. The problem in [SGS06]
was stated as finding a subset S in the graph that minimizes
the ratio of the capacity of the cut arcs separating it from its
complement, divided by the total similarity between all nodes
of the set S . In the presentation I put the integer programming
formulation on the board, realizing that it is an integer program
on monotone constraints. Such integer programs are solved in
polynomial time, as shown in [Hoc02]. Obviously, this model
is not the same as the normalized cut model, otherwise NP
would have been equal to P. To distinguish it from NC we re-
fer to it as normalized cut prime, NC’. The main content of the
paper [Hoc10] is showing that the NC’ criterion and another,
related, optimization criterion, “ratio region", are polynomial
time solvable.

The optimization criterion NC’ has since been shown to be
an effective clustering model. Not only is the quality of the
solutions very high, and in some cases the algorithms are able
to detect features, in images, that are hidden even to the hu-
man eye, but also the algorithms are computationally efficient.
This efficiency makes it possible to process optimally images
with millions of pixels and thus 3D images and videos, as in
[FHY11]. Previously such images were impossible to analyze
comprehensively.

One recent successful application of the new technique
is in evaluating drug effectiveness and ranking of drugs ac-
cording to their impact on individual cells, [HHY12]. An-
other, in [YFH12], enhances the physical properties of detec-
tors with the algorithm that effectively removes noise. A study
in [HLB12] investigating NC”s performance as compared to
the spectral approach, shows that the NC’ algorithm better ap-
proximates, in practice, the objective value of normalized cut.
It also provides better quality visual results, meaning that the
subjective quality of the clustering is better. In a way, this algo-
rithm demonstrates that a more computationally heavy model,
is not necessarily a more realistic or useful model. You can
have your cake and eat it too: Get a better model and pay less
in terms of run time!
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2011 ICS Prize Committee: Sam Burer (chair), David Kel-
ton, and Pascal Van Hentenryck

2011 ICS Best
Student Paper
Award Goes to
Hunter at
Virginia Tech

The 2011 ICS Student Paper Award Winner is Susan Hunter
(Virginia Tech) for the paper “Optimal Sampling Laws for
Stochastically Constrained Simulation Optimization on Finite
Sets.” Her advisor is Professor Raghu Pasupathy.
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Extended Abstract (contributed by Susan R. Hunter and
Raghu Pasupathy): The simulation-optimization (SO) prob-
lem is a nonlinear optimization problem where the objective
and constraint functions, defined on a set of candidate solu-
tions or “systems,” are observable only through consistent es-
timators. The consistent estimators can be defined implicitly
through a stochastic simulation model — a formulation that
affords virtually any level of complexity. Due to this gener-
ality, the SO problem has received great attention from both
researchers and practitioners in the last decade. Variations of
the SO problem are readily applicable in such diverse contexts
as vehicular transportation networks, quality control, telecom-
munication systems, and health care.

The SO variation we consider is an optimization problem
having a finite number of candidate solutions characterized by
multiple performance measures. One performance measure is
primary and called the objective function, while the rest are
secondary and called the constraint functions. For example, in
the call-center staffing problem, we wish to select the staffing
policy that minimizes the primary performance measure, the
expected staffing cost, subject to a bound on the secondary
performance measure, the expected waiting time for service.
Another example is the vaccine allocation problem, in which
we wish to select the vaccine allocation that minimizes the pri-
mary performance measure, the expected fraction of the pop-
ulation infected, subject to a bound on the secondary perfor-
mance measure, the expected cost of the vaccine policy. Given
that the performance measures can only be observed through a
Monte Carlo simulation, the problem is to identify the solution
having the best objective function value from among those so-
lutions whose constraint values cross a pre-specified threshold,
using only the simulation output. The efficiency of a solution
to this problem is measured in terms of the total simulation
effort expended.

The main technical contribution of this work lies in iden-
tifying the nature of simulation budget allocations that ensure
efficient solution algorithms. Specifically, this work uses large-
deviation principles to first characterize the likelihood of cor-
rectly identifying the solution to the SO problem as a func-
tion of the simulation budget allocation. This characteriza-
tion is then used within an optimization problem to estimate
the allocation that maximizes the likelihood of identifying the
correct solution to the underlying SO problem. To aid imple-
mentation, the paper also presents a way to sequentially es-
timate the allocation as simulation observations progressively
become available.

The broader implications of this work are threefold. First,
this work provides a framework for assessing the efficiency of
generic SO algorithms. Second, it provides an implementable
mechanism that guides the efficient allocation of simulation
expenditure when solving stochastically constrained SO prob-
lems on finite sets. For instance, when a tractable model of
random variables comprising the simulation is assumed, the

paper provides a practical way of apportioning simulation ef-
fort across the solution space, while guaranteeing efficiency
in a certain precise sense. Third, this work constructs the ba-
sic building blocks for identifying optimal sampling strategies
within more general constrained SO problems.

2011 ICS Student Paper Award Committee: Shabbir Ahmed
(chair), Peter Frazier, and Dominique Orban.

ICS Members in the News
Miguel F. Anjos (miguel-f.anjos@polymtl.ca), Ph.D., was aw-
arded a Tier 2 Canada Research Chair in Discrete Nonlinear
Optimization in Engineering: http://www.chairs-chaires.gc.ca
/chairholders-titulaires/profile-eng.aspx?profileId=2899. Tier
2 Chairs are awarded to exceptional emerging researchers, ac-
knowledged by their peers as having the potential to lead in
their field. Professor Miguel F. Anjos is currently the Canada
Research Chair in Discrete Nonlinear Optimization in Engi-
neering Mathematics & Industrial Engineering at Ecole Poly-
technique de Montreal.

John Gunnar Carlsson (jgc@me.umn.edu), Ph.D., received a
DARPA Young Faculty Award this year (http://go.usa.gov/Gxc)
for his project entitled Strategically Allocating Resources in a
Geographic Environment (SARGE). Dr. John Gunnar Carls-
son is currently an Assistant Professor in Industrial and Sys-
tems Engineering at the University of Minnesota. He received
his Ph.D. in Computational and Mathematical Engineering from
the Stanford University in 2009.

Janos D. Pinter (janos.d.pinter@gmail.com), Ph.D., DSc, re-
cently got his book, co-authored with Giorgio Fasano and en-
titled Modeling and Optimization in Space Engineering, pub-
lished as Springer Optimization and Its Applications series,
Volume 73 in 2012. Topical downloadable information is avail-
able at http://www.springer.com/mathematics/book/978-1-4614-
4468-8. Dr. Janos D. Pinter is currently the Proprietor & Re-
search Scientist at Pinter Consulting Services, Inc., Canada.
He is also the chair for the EUROPT Managing Board, where
EUROPT refers to The Continuous Optimization Working Group
of EURO http://www.iam.metu.edu.tr/EUROPT/.

Report on the Mathematical Program-
ming Glossary
Allen Holder, Rose-Hulman Mathematics
holder@rose-hulman.edu

The Mathematical Programming Glossary has had little
change since last February, at which time the new wiki-like
format was announced. The new format is an option from
the introductory page, and it is receiving some traffic. Re-
moving the autobot queries from the various search engines,
the Glossary averaged about 22,000 hits per week, of which
only about 600 were for the wiki-version. The pdf supple-
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ments were downloaded regularly at an average rate of about
330 per week. The Glossary has 73 citations as recognized by
scholar.google.com.

The wiki-format was tested on several platform and browser
combinations before releasing, but I recently noticed that the
layout appeared odd with my antiquated versions of linux and
Mozilla. This was one of the tested combinations, and I’m
looking into what has changed. The IOL servers are being up-
dated, and it could be that the latest version of php is serving
the html code differently.

Suggestions for new terms are welcome. I want to again
thank the constraint programming crew of Andrea Rendl, Ser-
dar Kadioglu, Roger Kameugne, and J. Christopher Beck, who
added many, many terms over the last couple of years.

SCIP Optimization Suite 3.0 Released
Timo Berthold
berthold@zib.de

Version 3.0 of the SCIP Optimization Suite has been re-
leased. It is comprised of SCIP 3.0, SoPlex 1.7, ZIMPL 3.3
and initial releases of GCG 1.0, a generic branch-cut-and-price
solver, and UG 0.7, a parallel framework for mixed integer
(non-)linear programming.

The SCIP Optimization Suite 3.0 provides many new fea-
tures, performance improvements, and bug fixes. Some high-
lights are: six new presolving and propagation plugins, an
iterative refinement procedure for computing high-precision
LP solutions, further improved support of MINLP, and beta-
versions of an AMPL and a MATLAB interface. The SCIP
Optimization Suite can be obtained via http://scip.zib.de. The
individual software packages and developers are listed below
and available at the corresponding websites:
SCIP 3.0: S. Heinz, G. Gamrath, M. Pfetsch and T. Berthold
SoPlex 1.7: A. Gleixner and M. Miltenberger
ZIMPL 3.3: T. Koch
UG 0.7: Y. Shinano
GCG 1.0: G. Gamrath, M. Bergner and C. Puchert

A Unified Framework for
Stochastic and Dynamic
Programming
Warren B. Powell
Princeton University

Warren is a professor in the Department of Operations Research and Financial
Engineering at Princeton University, where he has taught since 1981. He is
director of CASTLE Laboratory (http://www.castlelab.princeton.edu) where
he has worked on the modeling of complex dynamic systems in transportation
and energy. He is the author of Approximate Dynamic Programming: Solving
the curses of dimensionality and co-author of Optimal Learning. He recently
started a new laboratory, PENSA, focusing on stochastic optimization in en-
ergy systems (http://energysystems.princeton.edu).

Stochastic programming and approximate dynamic pro-
gramming have evolved as competing frameworks for solving
sequential stochastic optimization problems, with proponents
touting the strengths of their favorite approaches. With less
visibility in this particular debate are communities working un-
der names such as reinforcement learning, stochastic control,
stochastic search and simulation-optimization, to name just a
few. Put it all together and you get what I have come to call
the jungle of stochastic optimization.

The competing communities working in stochastic opti-
mization reflect the diversity of applications which arise in
different problem settings, resulting in the development of par-
allel concepts, terminology and notation. Problem classes are
distinguished by the nature of the decisions (discrete/continu-
ous, scalar/vector), the underlying stochastic process, the tran-
sition function (known/unknown) and the objective function
(convex? continuous?). Communities have evolved methods
that are well suited to the problem classes that interest them.
In the process, differences in vocabulary have hidden paral-
lel developments (two communities doing the same thing with
different terminology and vocabulary).

These differences have hidden important contributions that
might help other communities. Computer scientists have ig-
nored the power of convexity to solve problems with vector-
valued actions. At the same time, the stochastic program-
ming community has ignored the power of machine learning
to approximate high-dimensional functions [8]. Years ago, I
found that combining these two central ideas made it possible
to solve a stochastic dynamic program with a decision vector
with 50,000 dimensions and a state variable with 1020 dimen-
sions [15]. In another problem, the same methods solved a
stochastic, dynamic program with 175,000 time periods [11].

Stochastic programming, dynamic programming, and sto-
chastic search can all be viewed in a unified framework if pre-
sented using common terminology and notation. One of the
biggest challenges is the lack of a widely accepted modeling
framework of the type that has defined the field of determin-
istic math programming. Misconceptions about the meaning
of terms such as “state variable” and “policy” have limited dy-
namic programming to a relatively narrow problem class. For
this reason, I will begin with a proposal for a common mod-
eling framework which is designed to duplicate the elegance
of “min cx subject to Ax = b, x ≥ 0” that is so familiar to
the operations research community. I then turn to the issue
of defining what is meant by the word “policy.” This article
draws heavily on the ideas in [10].

Modeling stochastic, dynamic programs There are
five elements to almost any stochastic, dynamic program:
States, actions, exogenous information, the transition function,
and the objective function.

• The state variable S t - Incredibly, the dynamic program-
ming literature seems to universally use the concept of a
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state variable without actually defining it. In [9][Chapter
5](downloadable from http://adp.princeton.edu), I suggest
the following definition:
Definition: A state variable is the minimally dimensioned
function of history that is necessary and sufficient to com-
pute the decision function, the transition function, and the
cost/contribution function.

It is useful to think of three types of state variables:

– The physical/resource state Rt - This captures the con-
trollable elements of the problem which, in opera-
tions research, often refers to resources being man-
aged. This might be the amount of inventory, the lo-
cation of an aircraft, the status of a machine or the
price of a stock. It might also be called the physical
state, as in the location and velocity of a robot.

– The information state It - It includes exogenous infor-
mation that is needed to compute the cost/contribution
function, the decision function (such as the
constraints), and the transition function. It would
include exogenous information (such as market de-
mands and wind speeds), as well as any relevant in-
formation from history that has already been observed
and which is needed to make decisions in the future.

– The knowledge state Kt (also known as the belief
state) - This is a set of probability distributions de-
scribing our knowledge about unobservable parame-
ters. In some problem classes such as the multiarmed
bandit problem, the belief state is the only state vari-
able.

The stochastic programming community maintains a strict
division between Rt, which always appears as a right-hand
side constraint, and It, which is exogenous information
that is not affected by current or prior decisions. However,
there are applications where It is directly or indirectly in-
fluenced by decisions (large values of sales may influence
random market prices).

An important concept is the post-decision state which we
denote S x

t (if our decision is x) or S a
t (if we are using action

a). This is the state at time t immediately after a decision is
made, which includes only the decision needed to compute
the transition function (since we have already computed
the cost and made a decision), which has to capture the
information needed for future decisions.

By requiring that the state variable be both necessary and
sufficient, all stochastic dynamic systems are Markovian
by construction. At the same time, we are going to open a
fresh line of thinking for the stochastic programming com-
munity that depends on scenario trees which captures the
entire history.

• Decision variables - It is useful to adopt three notational
systems for decision variables: at for discrete actions (pop-
ular in computer science and the Markov decision pro-
cess community), ut for low-dimensional, continuous con-
trols, and xt for discrete or continuous but typically vector-
valued decisions for problems common in operations re-
search.
When we specify a model, we avoid the problem of de-
termining a decision other than to specify that it is the re-
sult of a policy which is a function that maps states to ac-
tions. We treat the determination of policies as separate
from the model. While it is common to refer to a policy
as π(s), I prefer to write it as a function Xπ

t (S t) (if it is a
time-dependent function to determine xt) or Aπ(s) (if it is
a stationary policy to determine an action a). In this no-
tation, π determines the type of function and any tunable
parameters.

• Exogenous information Wt - There seems to be no com-
mon notation for the random variables in a stochastic sys-
tem. Control theorists like wt, probabilists prefer capital
letters, so Wt seems like a compromise. However, unlike
the control theory community, we insist that any variable
indexed by t is known (“measurable”) at time t. I have
also adopted the notational convention of putting hats on
specific random variables, such as D̂t+1 for new customer
demands or p̂t+1 for the change in prices.

• Transition function - Also known as the system model,
state model, plant model, transfer function or just “model,”
this describes the evolution of the system over time, writ-
ten as

S t+1 = S M(S t, xt,Wt+1)

Note that S t is assumed to be fully known at time t, xt is
a decision that depends on the known information in S t,
while Wt+1 is random at time t.

In operations research, the transition function is often writ-
ten as a system of linear equations, although only for the
portion of the state variable that is controllable. We might
write the resource transition function as

Rt+1 = S R(Rt, xt,Wt+1) = At xt + R̂t+1,

while the information transition function It+1 =

S I(It, ·,Wt+1) might represent systems of equations such as

pt+1 = pt + p̂t+1, prices
Et+1 = Et + Êt+1. energy from wind.

There are many applications in engineering (such as mod-
eling a chemical plant) where the transition function might
consist of “500 lines of Matlab code.” In others (such as
modeling the effect of tax policy on climate change) the
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transition function is completely unknown. Problems with
an unknown transition function are referred to as “model
free.”

• The objective function - Using the standard notation of dy-
namic programming, we write the cost function as C(S t, xt)
to reflect the possible dependence of costs on the state vari-
able (costs, such as prices, can be stochastic). Assuming
we are minimizing the expected sum of costs, we would
write the objective function as

min
π∈Π
E

T∑
t=0

C(S t, Xπ
t (S t)). (1)

We have written the objective (1) assuming an undiscoun-
ted, finite horizon formulation, which is more familiar to
the stochastic programming community, but we could have
adopted a discounted, infinite horizon objective, or one
that minimized average costs. The objection function in
(1) must be accompanied by the transition function, and a
model of the exogenous process for W1,W2, . . ..

There is a tendency to equate “dynamic programming” with
Bellman’s optimality equation. In fact, a number of authors
will “model” a dynamic program by writing out Bellman’s op-
timality equation:

V(s) = min
a

C(s, a) + γ
∑

s′
P(s′|s, a)V(s′)

 .
A dynamic program, however, is a sequential decision prob-
lem, given by (1). Bellman’s optimality equation is a) a way
of mathematically characterizing an optimal policy and b) a
strategy for designing approximate policies. The challenge we
now face is the problem of specifying what it means to search
over the policies π ∈ Π.

Policies The dynamic programming community is very fa-
miliar with the word “policy” which is widely understood to
mean a mapping from states to actions. This is one reason
why the state variable must include all the information needed
to make a decision, compute the cost function and compute the
transition function. There are many papers in dynamic pro-
gramming where the policy is written in a lookup table form:
given a discrete state s, here is the discrete action a. However,
there is no reason to limit the definition of policies to such a
restricted format.

Policies come in many forms, but in my work I have been
able to divide them into four fundamental classes:

• Myopic cost function approximations - A myopic policy
is of the form

XM(S t) = arg min
xt∈Xt

C(S t, xt),

whereXt is the feasible region which may depend on S t.
In some settings, we can modify the problem to get bet-
ter results over time, either by modifying the cost func-
tion itself, or possibly by modifying the constraints. We
can represent this using

XCFA(S t |θ) = arg min
xt∈Xt(θ)

Cπ(S t, xt |θ).

where θ represents any tunable parameters needed to ad-
just the function.

• Lookahead policies - Also known as rolling/receding
horizon procedures, tree search, roll-out policies and,
in control theory, model-predictive control, lookahead
policies are popular in engineering practice. A deter-
ministic lookahead policy involves solving

XLA−Det
t (S t) = arg min

xt∈Xt

ct xtt +

t+H∑
t′=t+1

ct′ xtt′

 , (2)

where arg minxt optimizes over the entire (deterministic)
vector xt = (xtt, . . . , xtt′ , . . . , xt,t+H) over a specified hori-
zon H, but the decision function XLA−Det

t (S t) captures
only xtt. Of course, this has to be solved subject to con-
straints at each point in time and across time periods (we
represent these constraints in Xt). The stochastic pro-
gramming community likes to incorporate uncertainty
in the lookahead model, and solves

XLA−S P
t (S t) = arg min

xt
(ct xtt+

∑
ω∈Ω̂t

p(ω)
t+H∑

t′=t+1

ct′ (ω)xtt′ (ω)

 . (3)

Here, Ω̂t represents a subset of random outcomes over
the interval t to t + H. Equation (3) is a classical two-
stage stochastic programming formulation, where we
first choose xtt, then observe ω (which might be a se-
quence of random variables over time periods t+1, . . . , t+
H), and then choose xtt′ (ω) for all t′ > t given ω.

• Policy function approximations - PFAs are used when
the structure of the policy Xπ(S t) (or more likely Aπ(S t))
can be written in some analytic form. One example is
our (q,Q) inventory re-ordering policy which we can
write

Aπ(Rt |θ) =

0 If Rt ≥ q,
Q − Rt If Rt < q,

(4)

where θ = (q,Q). An alternative is to use a statistical
model. If xt and S t are scalar, we might use

Xπ(S t |θ) = θ0 + θ1S t + θ2S 2
t .
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Other examples include computing a control ut using a
statistical model such as a neural network (popular in
engineering). The distinguishing feature of a PFA is that
it does not have an imbedded optimization problem.

• Policies based on value function approximations - VFA
policies are based on Bellman’s equation, and have the
form

XVFA
t (S t) = arg min

xt∈Xt

(
C(S t, xt) + V̄t(S x

t )
)
. (5)

Here, we have used the concept of the post-decision
state variable S x

t which avoids the imbedded expecta-
tion common in dynamic programming. A strategy that
has attracted considerable attention under the name “ap-
proximate dynamic programming” (but studied widely
in the reinforcement learning community) is to approxi-
mate V̄t(S x

t ) using a linear model of the form

V̄t(S x
t ) =

∑
f∈F

θ fφ f (S x
t ), (6)

where the independent variables φ f (S x
t ) are known as

“basic functions” or “features.” However, a value func-
tion approximation can be represented using Benders
cuts, linear approximations (linear in the state variable),
or piecewise linear, separable approximations.

Three of the four classes of policies involve the use of
a function approximation (cost function, policy function and
value function). There are three fundamental ways of approx-
imating functions: lookup tables (a special case), parametric
models and nonparametric models. While lookup tables can
be written as a parametric model, computationally they behave
more like nonparametric models. In addition, a powerful class
of models are known as semiparametrics, which are basically a
hybrid of parametric and nonparametric. Not to be overlooked
are approximation strategies aimed specifically at approximat-
ing convex problems which include strategies such as Benders’
cuts, piecewise linear functions and shape-restricted statistical
learning methods.

It is possible (and popular) to mix and match these funda-
mental strategies to create hybrids. Examples include a deter-
ministic lookahead policy with value functions as terminal re-
wards, lookahead policies using cost function approximations,
value functions with policy function approximations [17], and
stochastic programming with scenario trees and policy func-
tion approximations [2].

The search over policies π ∈ Π in equation (1) might first
involve a search over major policy classes (including hybrids).
Then, each class of policy (or hybrid) tends to be characterized
by a vector of parameters that we call θ. In a stochastic pro-
gramming model, θ might include the planning horizon or the
strategy for generating scenarios. In a policy function approx-
imation, θ would be the parameters (or rules) that specify the
policy.

It is possible that someone has worked with a policy that
does not fit any of these four (or hybrids), but this is what
I have encountered in my own work. It is easy to describe
problems that are particularly well-suited to each of these four
classes. The important idea is to get away from equating dy-
namic programming with lookup tables.

With our new vocabulary and perspective, it is possible
to identify close relationships between communities that have
previously been viewed as completely distinct. Below I show
how to link stochastic search and dynamic programming, and
then dynamic programming and stochastic programming.

From stochastic search to dynamic programming
Problems in stochastic search are typically written

min
x
EF(x,W), (7)

where x is a deterministic set of parameters and W is a random
variable. Stochastic search has been viewed as distinctly dif-
ferent from sequential decision problems (dynamic programs)
because decisions xt in sequential problems are random vari-
ables in the future. However, this is not the right way to look
at them. In a dynamic program, the optimization problem is
(in most cases) a search for a deterministic policy. We might
write

Fπ(S 0) = EF̂π(S 0,W) =

T∑
t=0

C(S t, Xπ
t (S t)),

where S t+1 = S M(S t, Xπ
t (S t),Wt+1). The optimization problem

is then

min
π
EF̂π(S 0,W). (8)

Finding the best deterministic policy (which includes finding
both the structure of the policy and any parameters that charac-
terize the policy) corresponds directly to the stochastic search
problem in (7).

This perspective opens up a powerful set of tools for solv-
ing dynamic programs. For example, imagine that we have a
policy given by

XVFA
t (S t |θ) = arg min

xt∈Xt

C(S t, xt) +
∑
f∈F

θ fφ f (S x
t )

 .
While there is a substantial literature that tries to estimate θ
using Bellman error minimization (so that V̄(S t) predicts the
value of being in a state), growing attention has been given to
the idea of directly searching for the best value of θ to mini-
mize costs. This is the same as solving equation (8) with π = θ
which, of course, is the same as solving equation (7).

Stochastic search (known as direct policy search in the
ADP/RL literature), can work extremely well, but it is not well
suited to all problems. If we are unable to compute derivatives
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with respect to θ, then algorithms for derivative-free stochas-
tic optimization generally limit the number of dimensions of
θ. Particularly difficult are time-dependent problems where θt

is a function of time. However, anyone working in dynamic
programming should have a working knowledge of the tools
of stochastic search.

From dynamic programming to stochastic program-
ming

The transition from dynamic programming to stochastic
programming is somewhat more difficult if done carefully.
There has been growing recognition of the links between sto-
chastic programming and dynamic programming (see [3] and
[13]). Thorough presentations of stochastic programming can
be found in [5], [1], and [14].

We start with the classical statement of Bellman’s equation
for discrete state and action spaces (see [12])

V(s) = min
a∈A

C(s, a) + γ
∑
s′∈S

P(s′|s, a)V(s′)

 .
The stochastic programming community works purely with
time-dependent, finite horizon problems which we can write
as

Vt(S t) = min
at∈At

C(S t, at) + γ
∑
s′∈S

P(S t+1 = s′|S t, at)Vt+1(s′)

 .
We next replace the one-step transition matrix with an expec-
tation, giving us

Vt(S t) = min
at∈At

(C(S t, at) + γE{Vt+1(S t+1)|S t}) , (9)

where S t+1 = S M(S t, at,Wt+1). There is an implicit assump-
tion that we are using an optimal policy starting at time t + 1
onward. We are going to temporarily fix the policy represented
by Aπ

t′ (S t′ ), and replace the value function with the expected
sum of costs from t + 1 and the end of the planning horizon,

Vπ
t (S t) = min

at∈At

C(S t, at) + E

 T∑
t′=t+1

γt′−tC(S t′ , Aπ
t′ (S t′ ))

∣∣∣∣∣∣∣ S t


 .

We cannot compute the expectation, so we are going to replace
it with a Monte Carlo sample. This is also a good time to
switch from our discrete action at to vector-valued actions xt.
This gives us

V̄π
t (S t) = min

xt∈Xt

(C(S t, xt)+

1

|Ω̂|

∑
ω∈Ω̂

T∑
t′=t+1

γt′−tC
(
S t′ (ω), Xπ

t′ (S t′ (ω))
) .

The state S t′ consists of two components: the resource state
Rt′ that is controlled by our decisions xt, . . . , xt′ , and the ex-
ogenous information that we previously introduced as It′ . In

stochastic programming, it is common practice to view the ex-
ogenous information state as the entire history ht′ , and we will
continue to reference the history ht′ to develop the link with
stochastic programming. Thus, we can write S t′ = (Rt′ , It′ ) =

(Rt′ , ht′ ).
We are primarily interested in making a decision at time

t, so we are going to make the transition from approximat-
ing a policy over the entire simulation to time T to solving a
lookahead model over the interval t to t + H, where H is the
planning horizon. For example, we may want to model an en-
ergy storage problem over an entire year by solving sequences
of 24-hour optimization problems. However, even this shorter
horizon problem can be exceptionally difficult, so we have to
develop special algorithmic strategies.

Remembering that we are starting at time t in a given initial
state S t, we can write our history as

htt′ = (S t,Wt+1,Wt+2, . . . ,Wt′ ),

where t′ ranges from t to t + H. We are going to drop the ref-
erence to the unspecified policy Xπ

t′ (S t′ ) and allow ourselves
to choose actions in the future optimally, given the histories
htt′ (ω), ω ∈ Ω̂. At this point we are also going to recog-
nize that this optimization problem is a lookahead policy de-
termined by solving the optimization problem

Xπ
t (S t) = arg min

xtt
(C(S t, xtt)+

min
xt,t+1,...,xt,t+H

1

|Ω̂|

∑
ω∈Ω̂

t+H∑
t′=t+1

γt′−tC
(
S t′ (ω), xtt′ (htt′ (ω))

) ,
where there is a vector xtt′ for each history htt′ (ω), and where
the decision xtt affects the constraints for xt,t+1, . . . , xt,t+H . We
are now solving a stochastic optimization problem over a lim-
ited horizon H and a limited set of outcomes Ω̂, and yet even
this problem is quite difficult. We are going to make one last
tweak to get it into the more compact form

Xπ
t (S t) = arg min

xtt ,...,xt,t+H

1

|Ω̂|

∑
ω∈Ω̂

t+H∑
t′=t

γt′−tC(S t′ (ω), xtt′ (ω)), (10)

where xtt, . . . , xt,t+H = (xtt(ω), . . . , xt,t+H(ω)), ∀ω ∈ Ω̂. We
need to solve this optimization problem subject to the con-
straints for t′ = t + 1, . . . , t + H and all ω ∈ Ω̂,

At xtt(ω) = bt, (11)
xtt(ω) ≥ 0, (12)

At′ (ω)xtt′ (ω) − Bt′−1(ω)xt,t′−1(ω) = bt′ (ω), (13)
xtt′ (ω) ≥ 0. (14)

In this formulation, we interpret xtt′ (ω) exactly as it is written
- a single vector xtt′ for each outcome ω ∈ Ω̂ rather than the
history htt′ (ω). Instead of having one vector xtt′ for each his-
tory htt′ (which is a node in the scenario tree), we now have a
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vector xtt′ for each ω ∈ Ω̂. This creates a problem that we are
allowed to see into the future, so we add the nonanticipativity
constraints

xtt′ (ω) − x̄tt′ (htt′ ) = 0, ∀ω ∈ Htt′ (htt′ ), (15)

whereHtt′ (htt′ ) is the set of outcomes ω ∈ Ω̂ where the obser-
vations Wt+1, . . . ,Wt′ match htt′ .

The challenge with this strategy is that the scenario tree
(the set of histories) explodes very quickly. A common strat-
egy is to generate a set of outcomes for Wt+1, and then sharply
limit further branching in the scenario tree for later time pe-
riods ([1], [14], [7]). We can do this because we are only
interested in the decision xtt that we are going to implement
now.

Given the complexity of solving the lookahead policy, there
is by now a substantial research literature that has grown up
around various strategies for finding near-optimal solutions.
However, it is important to realize that an optimal solution of
(10) does not mean the resulting policy is optimal. Indeed,
bounds on the quality of the solution to (10) do not directly
translate to bounds on the performance of the policy in equa-
tion (1). This is true even if we choose t + H = T , because the
lookahead model is limited by the use of a scenario tree.

While explicit lookahead policies are popular in stochastic
programming, considerable attention has been given to using
a particular class of value function approximations for solving
the lookahead model. We use the notational system of [14]
to work backward from a formulation used in stochastic pro-
gramming to the notation we have been using in approximate
dynamic programming. This progression starts with

Qt(xt−1, ξ[t]) = min
xt

(
ct xt + E{Qt+1(xt, ξ[t+1])|ξ[t]}

)
. (16)

Here, Qt is called the recourse function, but this is just differ-
ent terminology and notation for our value function Vt. ξ[t] is
the history of the exogenous information process up to time t
(which we refer to as ht). The resource vector Rt is a func-
tion of xt−1 and, if we have an exogenous component such
as R̂t, then it also depends on Wt (which is contained in ξ[t]).
This means that the state variable is given by S t = (Rt, ht) =

(xt−1, ξ[t]).
We note that it is mathematically equivalent to use xt−1 in-

stead of Rt, but in most applications Rt is lower dimensional
than xt−1 and would be more effective computationally as a
state variable. Indeed, we would argue that while xt−1 is a suf-
ficient statistic to describe the resource state Rt, it is not nec-
essary because it carries more dimensions than are necessary.

These observations allow us to write (16) as

Qt(xt−1, ξ[t]) = min
xt

(
ct xt + Qx

t (Rx
t , ht)

)
(17)

= min
xt

(
ct xt + Qx

t (xt, ht)
)
. (18)

In the notation of dynamic programming (but retaining the lin-
ear cost structure), this would be written

Vt(S t) = min
xt

(
ct xt + V x

t (S x
t )
)
. (19)

Equation (18) is a deterministic optimization problem, which
is much more amenable to solution using the tools of math
programming. Our only challenge, then, is finding an approx-
imation of V x

t (S x
t ) = Qx

t (xt, ht). The most popular strategy
in stochastic programming is to use Benders’ decomposition,
where Qx

t (xt, ht) is replaced with a series of cuts, producing the
linear program

Vt(S t) = min
xt ,v

(
ct xt + v

)
, (20)

where

v ≥ αk
t (ht) + βk

t (ht)xt(ht), for k = 1, . . . ,K. (21)

It is standard notation in the stochastic programming commu-
nity to index these parameters as (αk

t+1(ht), βk
t+1(ht)) because

the cuts are approximating the problem at time t + 1, but the
parameters are Ft-measurable, and for this reason it is more
consistent with our notation to index them by time t.

The optimization problem (20) with (21) is a linear pro-
gram indexed by the history ht. The parameters (αk

t (ht), βk
t (ht))

are generated by simulating our way to ht+1 from ht, solving
the optimization problem at node ht+1, and then using the dual
information to update the parameters (αk

t (ht), βk
t (ht)). This type

of updating is completely familiar to the approximate dynamic
programming community. Indeed, it should be easy to see
that we are approximating the recourse function around the
post-decision state at time t given by E{Qt+1(xt, ξ[t+1])|ξ[t]} =

V x
t (S x

t ) = V x
t (Rx

t , ht) = V x
t (xt−1, ht).

While Benders’ cuts are very popular in the stochastic pro-
gramming community, they are hardly the only way to approx-
imate the value of the future. An alternative strategy is to use a
function that is linear in the (post-decision) resource variable,
as in

V̄t(S t) = min
xt∈Xt

ct xt +
∑

i

v̄tiRx
ti

 , (22)

Yet another strategy is to use an approximation that is piece-
wise linear but separable in Rx

t , as in

Vt(S t) = min
xt∈Xt

ct xt +
∑

i

V̄ti(Rx
ti)

 . (23)

Note that the approximations v̄ti and V̄ti(Rti) are not indexed by
the history ht, making these methods computationally much
more compact.

These approximation strategies highlight a critical differ-
ence that separates approximate dynamic programming from
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stochastic programming. The value function approximations
(22) and (23) are calculated over the entire simulation t =

0, . . . ,T rather than just within a planning horizon t, . . . , t + H
(see [15] and [16] for illustrations). This can be an important
property when we are interested in the value functions them-
selves. In [11], we estimate value function approximations of
the form given in (23) for 175,000 time periods. This produces
a policy of the form

Xπ
t (S t) = arg min

xt∈Xt

ct xt +
∑

i

V̄ti(Rx
ti)

 , (24)

where xt is a vector with hundreds or even thousands of di-
mensions.

By contrast, the stochastic programming community is us-
ing Benders’ cuts to form a “policy” for solving the lookahead
model over time periods t, . . . , t + H. The policy that is then
used for the full model is the decision produced at time t from
solving the lookahead model. After this decision, we roll for-
ward to t + 1 and solve a new problem over the horizon t + 1
to t + 1 + H and then repeat the entire process.

The only reason this is necessary is because of the use
of the scenario tree which is generated from the current state
S t, and which limits the lookahead model to relatively shorter
horizons. If we dropped the indexing of the cuts in (21) on
the nodes in the scenario tree, then it would be possible to
use Benders’ cuts over the entire horizon t = 0, . . . ,T in one
large model. An alternative strategy would be to index the cuts
based on clusters formed around the information state (rather
than the entire history). The important idea is to draw on the
tools of machine learning [4] rather than depending on lookup
tables (nodes in the scenario tree).

Closing thoughts While both the stochastic programming
and dynamic programming communities work on sequential
decision problems, there are some important differences in cul-
tures between the two communities. While it is important to
understand differences in terminology and notation, it is also
useful to understand the differences in motivating applications
and research styles.

Research in the stochastic programming community seems
to be characterized by:

• Works exclusively on time-dependent problems.

• Primary tools are explicit lookahead policies and value func-
tions based on Benders’ cuts to exploit convexity.

• Emphasizes convergence proofs and bounds on policies for
solving an approximate lookahead model rather than the
value of a policy over long horizons.

• Exploits convexity to handle vector-valued decisions.

• Depends heavily on the concept of scenario trees and lookup
tables rather than general purpose statistical learning algo-
rithms.

By contrast, the dynamic programming community seems to
be characterized by:

• Most of the research seems to be on infinite horizon prob-
lems, but applications to time-dependent problems are com-
mon.

• Most attention is on policies based on value function ap-
proximations and policy function approximations.

• Focus is on finding the best policy in terms of its perfor-
mance over a long (or infinite) horizon.

• More emphasis on discrete action spaces, or low-dimensional
continuous controls, without assuming convexity.

• Extensive use of machine learning techniques to approxi-
mate value functions.

These are generalizations, of course, but represent my sense
of these communities. My hope is that this discussion will help
to bridge the gap.
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IJOC Seeks Book Reviews Editor
The IJOC Book Reviews Editor seeks and approves re-

views of books at the interface between operations research
and computer science. This position has a two year term and
is an outstanding way to develop and maintain contact with
researchers interested in these topics as well as contribute in
an important and visible way to ongoing research. Detailed
information can be observed at http://www.informs.org/Pubs/
IJOC/Book-Reviews. If you are interested or if you would like
to nominate someone, please email DLWoodruff@UCDavis.edu.
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